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SUMMARY 

The aim of this study was to compare different ways of accounting for population structure for 

genomic prediction of three economic traits in an Australian Merino sheep population. Population 

structure was accounted for either by fitting genetic groups (GG) derived from pedigree, or fitting 

principal components (PCs) calculated from the genomic relationship matrix based on 50k density 

SNP marker genotypes. Genomic breeding values (GBV) were calculated using genomic best linear 

unbiased prediction (GBLUP) and the GBV accuracy was evaluated based on 5 fold cross-validation 

across half-sib families. Best linear unbiased estimation (BLUE) of GG or PC effects were added to 

the GBV. Results showed that accounting for population structure either by fitting GG or PCs 

improved the accuracy of genomic prediction. Furthermore, fitting the first two PCs gave a similar 

accuracy to fitting GG derived from pedigree. The improvement in GBV accuracy after accounting 

for population structure in studied traits was not high (3.8% when averaged across traits) which may 

be because the genomic relationship matrix will implicitly account for some of the population 

structure effect when the GG or PCs are not fitted in analysis. In the case of missing or incomplete 

pedigrees, PCs can be used to account for population structure and to improve the prediction 

accuracies. 

 
INTRODUCTION 

Differences in average genetic effects of breeds or strains within breeds (population structure) 

may affect the accuracy of genetic merit evaluation of selection candidates. Population structure 

could bias the genomic estimated breeding values (GBV) and hence affect the realized selection 

response. Australian Merino sheep is a highly diverse population due to different breeding objectives 

within the various types of Merino, and due to different production environments. The Merino breed 

consists of many sub-populations according to wool quality, e.g. strong wool, fine wool and ultra-

fine wool Merinos. Accounting for population structure is a very importance feature of 

MERINOSELECT which is the national genetic evaluation of Australian Merino sheep (Brown et 

al. 2015; Swan et al. 2014) 

The effect of population structure can be accounted for in the estimation of breeding values 

(based on phenotype and pedigree), according to genetic groups derived from pedigrees. However, 

in the case of incomplete pedigree information, population structure can be derived from genotypes 

by using Principal Components (PCs) from the genomic relationships matrix (GRM) (Price et al. 

2006). Fitting PCs explicitly in the model is likely more accurate than accounting for the structure 

implicitly through the GRM (Van der Werf et al. 2013). The aim of this study was to compare fitting 

genetic groups based on pedigree with fitting PCs based on the genomic relationship matrix when 

accounting for population structure in genomic prediction of Australian Merino sheep.  

 
MATERIALS AND METHODS 

Reference population, phenotypes and validation population. The traits studied were post 

weaning weight (PWW, 6,388 records), ultrasound scanned eye muscle depth (PEMD, 4,012 
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records) measured between 150 and 290 days from birth and yearling greasy fleece weight (YGFW, 

5,200 records) on Merino sheep. Animals originated from the “Sheep Cooperative Research Centre 

Information Nucleus Flock“ (INF) and the Resource Flock (RF) which consisted of eight sites 

located across different regions of Australia and these were linked to each other by using common 

sires through artificial insemination between 2007 and 2015. More information on the scope and 

design of the INF is provided by Van der Werf et al. (2010). The accuracy of genomic prediction 

was evaluated based on the average of 5-fold cross-validation, where whole half sib families were 

sampled such that half sibs could not appear in training as well as validation set. The accuracy was 

calculated as the correlation between the GBV and the corrected phenotype, divided by the square 

root of the trait heritability. 

Genotypes. Genotypes were available based on real 50K Ovine marker panel (Illumina Inc., San 

Diego, CA, USA) or 12K which was imputed to 50K. The 50K and 12K marker panel provided 

respectively 48,559 and 12,646 SNP genotypes after applying quality control. The sporadic missing 

genotypes were imputed first using Beagle 3.0 (Browning 2009). Animals genotyped with 12K 

marker density then were imputed to 50K density using Beagle 3.0 and using all Merino animals 

genotyped with 50K marker density as reference set. Accuracy of imputation was shown to be high 

(on average 0.96). 

Statistical methods. Genomic best linear unbiased prediction (GBLUP) was used to calculate 

the Genomic Breeding Values (GBV) using the ASReml (Gilmour et al. 2009) program. The model 

fitted for each trait was: y = Xb + Z1g +  Z2m + e where y is a vector of phenotypes, b is a vector 

with fixed effects, g is the random additive genetic effect of the animal, m is a vector with maternal 

effects and e is vector of random residual effects, X, Z1 and Z2 are incidence matrices relating effects 

to animals. The parameters g, m and e are considered normally distributed as: 𝑔 ~ 𝑁(0, 𝐺𝜎𝑔
2), 

𝑚 ~ 𝑁(0, 𝐼𝜎𝑚
2 ) and 𝑒 ~𝑁(0, 𝐼𝜎𝑒

2), respectively and G was the genomic relationship matrix 

calculated based on 50k markers genotypes using the VanRaden (2008) method. The common fixed 

effects in all models were birth type, rearing type, gender, age at measurement and contemporary 

group which was flock × birth year × management group. In the GG models 5 genetic groups were 

fitted as a regression (fixed continuous variable) on proportion of Merino sub-population (strains) 

where the proportions for individual animals were derived from a deep pedigree. In the PC models 

principal components were fitted by regression on up to ten eigenvectors associated with the largest 

10 principal components.  

 

RESULTS AND DISCUSSION 

Tables 1, 2 and 3 compare the accuracy of genomic prediction between different models of fitting 

GG or PCs to account for population structure for PWW, PEMD and YGFW, respectively. Results 

show higher prediction accuracy for three different traits studied when population structure was 

accounted for in the model and then solutions for GG or PCs’ effects were added to the GBV. This 

result was in line with a previous study by Daetwyler et al. (2013) who showed higher genomic 

prediction accuracy within Australian sheep breeds by accounting for population structure using 

PCs. However, the improvement in accuracy compared to only fitting the GRM in this study was 

not very high and on average 3.4% in absolute value.  

Results showed fitting the first two largest PCs resulted in similar prediction accuracy to fitting 

GG from pedigree. Brown et al. (2015) and Swan et al. (2014) also showed strong correlation 

between using GG derived from pedigree and PCs calculated from genomic relationship matrix to 

correct the impact of population structure on estimation of genetic merits of animals. In this study 

the accuracy of GBV (GG/PC effect inclusive) was not increased by fitting more PCs. Results also 

showed a continuous decrease in GBV accuracy if the GG or PC effect solution was not added to 

GBV (Tables 1-3). 
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Table 1. Variance components, (SE) and average accuracy of genomic predictions from 5 

fold cross-validation for PWW based on fitting genetic groups (GG) or Principal 

Components (PCs). 
 

Model Ve1 Va2 Vdam3 r(GBV1,Res)4 r(GBV2,Res+GG) 5 

No GG 13.83 (0.73) 12.05 (0.91) 2.08 (0.61) NA 0.348  

GG 14.61 (0.74) 10.22 (0.89) 2.28 (0.61) 0.243 0.368 

1PC 14.24 (0.73) 10.98 (0.90) 2.23 (0.61) 0.218 0.342 

2PC 14.41(0.73) 10.55 (0.89) 2.30 (0.61) 0.215 0.355 

3PC 14.96 (0.74) 9.33 (0.88) 2.44 (0.61) 0.194 0.322 

4PC 14.94 (0.74) 9.36 (0.88) 2.43 (0.61) 0.194 0.322 

5PC 14.93 (0.74) 9.40 (0.88) 2.43 (0.61) 0.191 0.322 

10PC 14.99 (0.74) 9.24 (0.88) 2.45 (0.61) 0.178 0.316 
1Residual variance, 2Additive genetic variance, 3Dam permanent environmental effect, 4Average of correlation between 

GBV (corrected for GG or PC effects) and corrected phenotypes (adjusted for GG effects). 5Average of correlation between 

GBV (plus solution for GG or PCs) and corrected phenotypes (not adjusted for GG effect).  

 

 

Table 2. Variance components, (SE) and accuracy of genomic prediction for PEMD based on 

fitting genetic groups (GG) or Principal Components (PCs). 

 

Model Ve1 Va2 r(GBV1,Res)3 r(GBV2,Res+GG) 4 

GG not fitted 5.066 (0.22) 2.251 (0.25) NA 0.384 

GG fitted 5.398 (0.23) 1.728 (0.25) 0.348 0.420 

1PC 5.146 (0.22) 2.121 (0.25) 0.341 0.412 

2PCs 5.237 (0.22) 1.976 (0.25) 0.320 0.422 

3PCs 5.504 (0.22) 1.565 (0.25) 0.317 0.394 

4PCs 5.496 (0.23) 1.552 (0.25) 0.316 0.393 

5PCs 5.510 (0.23) 1.550 (0.25) 0.316 0.393 

10PCs 5.524 (0.23) 1.550 (0.25) 0.311 0.387 
1Residual variance, 2Additive genetic variance, 3Average of correlation between GBV (corrected for GG or PC effects) and 

corrected phenotypes (adjusted for GG effects). 4Average of correlation between GBV (plus solution for GG or PCs) and 

corrected phenotypes (not adjusted for GG effect).  

 

 

Tables 1, 2 and 3 also show the additive genetic, residual and dam variance (for PWW and 

YGFW only) for different models. Results show a continuous decrease in additive genetic variance 

and an increase in residual variance by fitting GG or fitting 1 to 10 PCs. The change in dam effect 

was very small in PWW and YGFW. 

Results of this study showed that accounting for population structure according to pedigree or 

genomic information improves the total genetic merit prediction accuracy. However, the increase in 

prediction accuracy in traits studied was not very high compared to fitting only the GRM. This 

indicate that it is likely that the GRM could account for only part of the effect of population structure 

implicitly as was indicated before (Van der Werf et al. 2013).  
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The reason for lower accuracy of GBVs (corrected for PCs) by fitting more PCs would be 

because fitting more PCs can capture part of the total additive genetic variance between different 

flocks and between half-sib families within flocks. 

In term of estimating the total genetic merits for animals with pedigree information the results 

show the GG model seems to work slightly better than PCs model. However, fitting the first two 

largest PCs derived from the GRM can also sufficiently account for population structure. This shows 

that in the case of missing, incomplete or not reliable pedigree information and if the animals were 

genotyped, PCs could be used to account for population structure to obtain higher prediction 

accuracies within a breed. This could be more important in prediction of unbiased breeding values 

on the national scale such as Australian Sheep Breeding values (ASBV) with probable larger impact 

of genetic groups. 

Table 3. Variance component, (SE) and accuracy of genomic prediction for YGFW based on 

fitting genetic groups (GG) or Principal Components (PCs). 

 

Model Ve1 Va2 V(dam)3 r(GBV1,Res)4 r(GBV2,Res+GG) 5 

GG not fitted 0.160 (0.01) 0.128 (0.01) 0.016 (0.01) NA 0.564 

GG fitted 0.163 (0.01) 0.121 (0.01) 0.017 (0.01) 0.532 0.611 

1PC 0.153 (0.01) 0.131 (0.01) 0.020 (0.01) 0.524 0.562 

2PCs 0.156 (0.01) 0.127 (0.01) 0.021 (0.01) 0.519 0.604 

3PCs 0.157 (0.01) 0.122 (0.01) 0.021 (0.01) 0.509 0.569 

4PCs 0.161 (0.01) 0.122 (0.01) 0.021 (0.01) 0.509 0.566 

5PCs 0.163 (0.01) 0.121 (0.01) 0.022 (0.01) 0.508 0.566 

10PCs 0.167 (0.01) 0.116 (0.01) 0.021 (0.01) 0.487 0.560 
1Residual variance, 2Additive genetic variance, 3Dam permanent environmental effect, 4Average of correlation between 

GBV (corrected for GG or PC effects) and corrected phenotypes (adjusted for GG effects), 5Average of correlation between 

GBV (plus solution for GG or PCs) and corrected phenotypes (not adjusted for GG effect).  
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